APLIKASI RENEWAL REWARD (Studi Kasus: Proses Renewal Reward pada Transaksi di Mixue Jimbaran)

Authors

  • Ni Putu Desy Susilawati Program Studi Matematika, Fakultas MIPA, Universitas Udayana
  • Komang Agus Mahendra Apriana Program Studi Matematika, Fakultas MIPA, Universitas Udayana
  • Putu Ayu Liana Prasetya Dewi Program Studi Matematika, Fakultas MIPA, Universitas Udayana

Keywords:

Stochastic Process, Renewal Process, Renewal Reward Process

Abstract

A stochastic process is a probability model that describes a series of events occurring randomly within the context of specific conditions or time intervals. Stochastic processes are divided into two types, namely discrete stochastic and continuous-time stochastic. One example of discrete-time stochastic is the renewal process, which is a computational process where the time intervals between arrivals are independent and have an identical distribution (IID) with any distribution. One specific type of renewal process is applied in the context of queues and involves rewards, also known as the renewal reward process. This article aims to demonstrate that one of the transactions at the Mixue company located in Jimbaran, Bali, near the Polytechnic of Bali (PNB), fulfills the characteristics of the renewal reward process.

Downloads

Download data is not yet available.

References

Candra Rini, I. T., & Hartadi, A. (2023). Pengaruh Harga terhadap Keputusan Pembelian Ice Cream (Studi Kasus di Mixue Yogyakarta). Jurnal Bisnis, Manajemen, Dan Akuntansi, 10(2), 178. https://doi.org/10.54131/jbma.v10i2.170

Chasanah, D. M., Matematika, P. S., Sains, F., Teknologi, D. A. N., Islam, U., & Syarif, N. (2016). Proses renewal reward.

Ghahramani, S. (2015). Fundamentals of probability: With stochastic processes, third edition. In Fundamentals of Probability: with Stochastic Processes, Third Edition. https://doi.org/10.1201/b19602

Kakubava, R. (2008). Analysis of Alternating RenewalProcesses. R&Rata, 1, 77–83.

Levy, J. B., & Taqqu, M. S. (2000). Renewalreward processes with heavy-tailed inter-renewaltimes and heavy-tailed rewards. Bernoulli, 6(1), 23–44. https://doi.org/10.2307/3318631

Medhi, J. T. A.-T. T.-. (1994). Stochastic processes (2nd ed NV). J. Wiley New York. https://doi.org/ LK - https://worldcat.org/title/680105546

Musafa, M., & Meli, N. (2020). Studi Pendugaan Rekursif dan Nilai Dugaan Proses Obsrervasi Model Hidden Markov. Imajiner: Jurnal Matematika Dan Pendidikan Matematika, 2(6), 540–548. https://doi.org/10.26877/imajiner.v2i6.8147

Sigman, K. (2018). Some basic renewal theory : The Renewal Reward Theorem. 0, 1–8.

Suyono. (2003). Renewal processes and repairable systems. 0(1), 1–9.

Udoumoh, E. F. (2022). Stochastic Modelling of Oil Spill Incidences as Renewal Process. 2(2), 28–33.

Vlasiou, M. (2014). Renewal processes with costs and rewards. 1–7. https://doi.org/10.1002/9780470400531.eorms0722

Walpole, R. E. (1990). Pengantar Statistika. Penerbit PT Gramedia Pustaka Utama. https://books.google.co.id/books?id=hzwjcgAACAAJ

Downloads

Published

2025-08-31

How to Cite

Ni Putu Desy Susilawati, Komang Agus Mahendra Apriana, & Putu Ayu Liana Prasetya Dewi. (2025). APLIKASI RENEWAL REWARD (Studi Kasus: Proses Renewal Reward pada Transaksi di Mixue Jimbaran). Jurnal Ilmu Pendidikan Dan Kearifan Lokal, 1(5), 87–96. Retrieved from https://jipkl.com/index.php/JIPKL/article/view/262

Issue

Section

Articles